Effects of fiber characteristics on lung deposition, retention, and disease.
نویسنده
چکیده
There is abundant epidemiologic evidence that asbestos fibers can cause lung fibrosis (asbestosis), bronchial cancer, and mesothelioma in humans, as well as limited evidence for such effects in workers exposed to slag and rockwool fibers. Epidemiological evidence for human disease from inhalation exposures to conventional fibrous glass is negative. While health concerns based on the morphological and toxicological similarities between man-made fibers and asbestos are warranted, it is important to note that most of the toxicological evidence for glass fiber toxicity in laboratory animals is based on nonphysiological exposures such as intratracheal instillation or intraperitoneal injection of fiber suspensions. Man-made fibers have produced lung fibrosis and mesotheliomas in such tests, albeit at much lower yields than asbestos. For all durable mineral fibers, critical length limits must be exceeded to warrant concern about chronic toxicity; i.e., 2 microns for asbestosis, 5 microns for mesothelioma, and 10 microns for lung cancer. Fiber width must be less than 0.1 microns for mesothelioma, and larger than this limit for asbestosis and lung cancer. The human health risks for most fibrous glass products are either low or negligible for a variety of reasons. First, most commercial fibrous glass products have mean fiber diameters of approximately 7.5 microns, which results in mean aero-dynamic diameters approximately 22 microns. Thus, most glass fibers, even if dispersed into the air, do not penetrate into the lung to any great extent. Second, the small fraction of smaller diameter fibers that do penetrate into the lungs are not persistent within the lungs for most fibrous glass products due to mechanical breakage into shorter lengths and overall dissolution.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
CirculatingMiR-10b, MiR-1 and MiR-30a Expression Profiles in Lung Cancer: Possible Correlation with Clinico-pathologic Characteristics and Lung Cancer Detection
Circulating microRNAs have been recognized as promising biomarkers for the detection of lung cancer. The objective of this study was to evaluate miR-10b, miR-1 and, miR-30a in the plasma samples of lung cancer patients to confirm any possible relevance in the early detection of lung cancer. Plasma samples from 47 non-small-cell lung cancer patients and 41 cancer-free subjects were evaluated for...
متن کاملP 106: Effects of Dimethyl Sulfoxide on NLRP3 Inflammasome and Alzheimer\'s Disease
Alzheimer's disease (AD), the most ordinary form of dementia and extracellular accumulation of Amyloid-β (Aβ) in senile plaques, is an important and a main event in the pathogenesis of AD. Deposition of Aβ Peptide initiates a spectrum of cellular responses that are interposed by the resident neuroimmune cells of the brain, the microglia. Recently, a novel inflammasome signaling&n...
متن کاملInvestigation of the Effects of Age and Sex on Fiber Characteristics of Iranian Indigenous Goats
This study was conducted to investigate the effects of age and sex on the fleece characteristics of 40 Iranian indigenous Khorasan goats. Goats were divided into two different sex and age (kids and adults) groups. Fiber characteristics under study were: fleece weight, fiber length, lock length, fiber diameter, coefficient of fiber diameter, breaking load, resistance, elongation, hair percentage...
متن کاملVarenicline Ameliorates Learning and Memory Deficits in Amyloid β(25–35) Rat Model of Alzheimer’s Disease
Introduction: Alzheimer’s disease (AD) is a enfeeble neurodegenerative disorder characterized by increased β-amyloid (Aβ) deposition and neuronal dysfunction leading to impaired learning and recall. Among proposed risk factors, impaired cholinergic transmission is a main cause for incidence of disease. Methods: In the present study, effects of the intracerebroventricularly administration of an ...
متن کاملA theoretical approach to the deposition and clearance of fibers with variable size in the human respiratory tract.
In the study presented here, a mathematical approach for the deposition and clearance of rigid and chemically stable fibers in the human respiratory tract (HRT) is described in detail. For the simulation of fiber transport and deposition in lung airways an advanced concept of the aerodynamic diameter is applied to a stochastic lung model with individual particle trajectories computed according ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental Health Perspectives
دوره 88 شماره
صفحات -
تاریخ انتشار 1990